http://iet.metastore.ingenta.com
1887

Saliency-based initialisation of Gaussian mixture models for fully-automatic object segmentation

Saliency-based initialisation of Gaussian mixture models for fully-automatic object segmentation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The conventional object segmentation methods often degrade their performance due to the requirement of user interaction and/or the incomplete colour appearance models. In this Letter, the authors propose a novel design method of a colour appearance model for accurate and fully-automatic object segmentation by using saliency maps. The authors initialise the Gaussian mixture models (GMMs) to describe the colour appearance of the foreground objects and the background, respectively, where the mean vectors, covariance matrices, and mixing coefficients are updated adaptively such that more salient pixels have larger weights to update the GMM for the foreground objects while less salient pixels have larger weights to update the GMM for the background, respectively. Experiments are performed on MSRC, iCoseg, and PASCAL datasets and we show that the proposed method outperforms the existing methods quantitatively and qualitatively.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • P. Mehrani , O. Veksier .
        4. Mehrani, P., Veksier, O.: ‘Saliency segmentation based on learning and graph cut refinement’. British Machine Vision Conf., 2010, pp. 112.
        . British Machine Vision Conf. , 1 - 12
    5. 5)
      • X. Li , J. Hao , M. Shang .
        5. Li, X., Hao, J., Shang, M., et al: ‘Saliency segmentation and foreground extraction of underwater image based on localization’. IEEE OCEANS 2016-Shanghai, 2016, pp. 14.
        . IEEE OCEANS 2016-Shanghai , 1 - 4
    6. 6)
      • M.B. Christopher . (2006)
        6. Christopher, M.B.: ‘Pattern recognition and machine learning’ (Springer, New York, NY, USA, 2006), pp. 423455.
        .
    7. 7)
      • S.S. Kruthiventi , V. Gudisa , J.H. Dholakiya .
        7. Kruthiventi, S.S., Gudisa, V., Dholakiya, J.H., et al: ‘Saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 57815790.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 5781 - 5790
    8. 8)
      • M. Rubinstein , A. Joulin , J. Kopf .
        8. Rubinstein, M., Joulin, A., Kopf, J., et al: ‘Unsupervised joint object discovery and segmentation in internet images’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 19391946.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 1939 - 1946
    9. 9)
    10. 10)
      • J.C. Rubio , J. Serrat , A. Lopez .
        10. Rubio, J.C., Serrat, J., Lopez, A., et al: ‘Unsupervised co-segmentation through region matching’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 749756.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 749 - 756
    11. 11)
      • 11. [Online] Available at: https://www.microsoft.com/en-us/research/project /image-understanding/.
        .
    12. 12)
      • D. Batra , A. Kowdle , D. Parikh .
        12. Batra, D., Kowdle, A., Parikh, D., et al: ‘Icoseg: interactive co-segmentation with intelligent scribble guidance’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 31693176.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 3169 - 3176
    13. 13)
    14. 14)
      • W. Zhu , S. Liang , Y. Wei .
        14. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 28142821.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 2814 - 2821
    15. 15)
      • 15. [Online] Available at: http://vision.csd.uwo.ca/code/.
        .
    16. 16)
      • R. Margolin , L. Zelnik-Manor , A. Tal .
        16. Margolin, R., Zelnik-Manor, L., Tal, A.: ‘How to evaluate foreground maps?’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 248255.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 248 - 255
    17. 17)
      • S. Vicente , C. Rother , V. Kolmogorov .
        17. Vicente, S., Rother, C., Kolmogorov, V.: ‘Object cosegmentation’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 22172224.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 2217 - 2224
    18. 18)
      • R. Shi , K.N. Ngan , S. Li .
        18. Shi, R., Ngan, K.N., Li, S.: ‘Jaccard index compensation for object segmentation evaluation’. Proc. IEEE Int. Conf. on Image Processing (ICIP), 2014, pp. 44574461.
        . Proc. IEEE Int. Conf. on Image Processing (ICIP) , 4457 - 4461
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2017.3877
Loading

Related content

content/journals/10.1049/el.2017.3877
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address