access icon free High-power single spatial mode superluminescent diodes at 675 nm

The optimisation of AlGaInP/GaInPAs MQW heterostructure metal-organic chemical vapour deposition growth as well as the improvements of active channel formation and P-contact deposition technologies is shown to enable a significantly increased external differential efficiency up to 0.5 mW/mA and catastrophic optical damage threshold up to 50 mW of spatially single-mode superluminescent diodes (SLDs) at central wavelength of 675 nm. Life time tests demonstrated high reliability of new SLDs at continuous wave output power of up to 30 mW. The dependencies of spectral and power characteristics of these SLDs on active channel dimensions are presented. To the best of knowledge, these are the most powerful and broadband SLDs at 675 nm.

Inspec keywords: aluminium compounds; indium compounds; superluminescent diodes; semiconductor device reliability; optimisation; MOCVD; life testing; gallium compounds; semiconductor device testing

Other keywords: AlGaInP-GaInPAs; SLD; high-power spatially single-mode superluminescent diode; p-contact deposition technology; MQW heterostructure metal-organic chemical vapour deposition growth; life time testing; reliability; wavelength 675 nm; optimisation; active channel formation

Subjects: Reliability; Chemical vapour deposition; Semiconductor device modelling, equivalent circuits, design and testing; Light emitting diodes

References

    1. 1)
    2. 2)
      • 5. Rossetti, M., Napierala, J., Matuschek, N., et al: ‘Superluminescent light emitting diodes: the best out of two worlds’. Proc. SPIE 8252, MOEMS and Miniaturized Systems XI, San Francisco, USA, February 2012, pp. 825208, doi: 10.1117/12.912759.
    3. 3)
      • 8. Filipaki, M., Schneider, F.K., Suhr, H.: ‘SLD and LED-based in situ microscope illumination for cell monitoring in bioreactor’. XVIII Congreso Argentino de Bioingeniería SABI 2011 – VII Jornadas de Ingeniería Clínica Mar del Plata, Argentina, September 2011.
    4. 4)
    5. 5)
    6. 6)
      • 3. Gastinger, K., Løvhaugen, P., Skotheim, Ø., et al: ‘Multi-technique platform for dynamic and static MEMS characterisation’. Proc. SPIE 6616, Optical Measurement Systems for Industrial Inspection V, Munich, Germany, June 2007, pp. 66163K, doi: 10.1117/12.726307.
    7. 7)
    8. 8)
      • 6. Liang, H., Peric, B., Hughes, M., et al: ‘Optical coherence tomography for art conservation and archaeology’. Proc. of SPIE 6618, Optics for Arts, Architecture, and Archaeology, Munich, Germany, July 2007, pp. 661805, doi: 10.1117/12.726032.
    9. 9)
    10. 10)
      • 7. Storen, T., Royset, A., Giskeodegard, N., et al: ‘Comparison of speckle reduction using polarization diversity and frequency compounding in optical coherence tomography’. Proc. SPIE 5316, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII, San Jose, USA, July 2004, pp. 196204, doi:10.1117/12.530608.
    11. 11)
      • 10. Padalitsa, A., Marmalyuk, A., Ladugin, M., et al: ‘MOVPE grown AlGaInP/GaInAsP heterostructures for superluminescent diodes emitting at 690 nm’. 17th European Workshop on MOVPE (EW-MOVPE17), Grenoble, France, 2017, poster A12.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2017.2944
Loading

Related content

content/journals/10.1049/el.2017.2944
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading