http://iet.metastore.ingenta.com
1887

S-box on subgroup of Galois field based on linear fractional transformation

S-box on subgroup of Galois field based on linear fractional transformation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The erection of a substitution box based on linear fractional transformation applied on the subgroup of multiplicative part of Galois field GF(28) is studied. The establishment of constrained linear fractional transformation on the elements of the subgroup is intricacy of the problem. The robustness of the proposed substitution box against renowned algebraic and statistical attacks is gauged to enumerate its confusion creating ability. The analysis is accomplished by finding non-linearity, approximation probabilities and strict avalanche criterion. The majority logic criterion is employed to guesstimate the efficacy of substitution box in image encryption applications.

References

    1. 1)
    2. 2)
      • J. Daemen , V. Rijmen . (2002)
        2. Daemen, J., Rijmen, V.: ‘The design of Rijndael, AES – the advanced encryption standard’ (Springer-Verlag, New York, NJ, USA, 2002).
        .
    3. 3)
      • N. Ferguson , R. Schroeppel , D. Whiting .
        3. Ferguson, N., Schroeppel, R., Whiting, D.: ‘A simple algebraic representation of Rijndael’. Selected Areas in Cryptography, SAC'01, Berlin, Heidelberg, Germany, December 2001 (LNCS2259), pp. 103111.
        . Selected Areas in Cryptography, SAC'01 , 103 - 111
    4. 4)
      • S. Murphy , M.J. Robshaw .
        4. Murphy, S., Robshaw, M.J.: ‘Essential algebraic structure within the AES’. Advances in Cryptology-Crypto 2002, Berlin, Heidelberg, Germany, September 2002 (LNCS2442), pp. 116.
        . Advances in Cryptology-Crypto 2002 , 1 - 16
    5. 5)
      • T. Shah , A. Qamar , I. Hussain .
        5. Shah, T., Qamar, A., Hussain, I.: ‘Substitution box on maximal cyclic subgroup of units of a Galois ring’, Z. Naturforsch. A, 2013, 68, (8-9), pp. 567572, doi: 10.5560/zna.2013-0021.
        . Z. Naturforsch. A , 567 - 572
    6. 6)
      • T. Shah , S. Jahangir , A.A. de Andrade .
        6. Shah, T., Jahangir, S., de Andrade, A.A.: ‘Design of new 4 × 4 S-box from finite commutative chain rings’, Comput. Appl. Math., 2015, pp. 115, doi: 10.1007/s40314-015-0265-9.
        . Comput. Appl. Math. , 1 - 15
    7. 7)
      • C. Carlet . (2011)
        7. Carlet, C.: ‘Nonlinearity of boolean functions’, in Van Tilborg, C.A., Jajodia, S. (Eds.): ‘Encyclopedia of Cryptography and Security’ (Springer, USA, 2011, 2nd edn.) pp. 848849.
        .
    8. 8)
      • T. Ritter .
        8. Ritter, T.: ‘Measuring Boolean function nonlinearity by Walsh transform’, http://www.ciphersbyritter.com/ARTS/MEASNONL.HTM, 1998.
        .
    9. 9)
      • M. Matsui .
        9. Matsui, M.: ‘Linear cryptanalysis method of DES cipher’. Advances in cryptology – EUROCRYPT’ 93, Berlin, Heidelberg, Germany, July 2001 (LNCS, 765), pp. 386397.
        . Advances in cryptology – EUROCRYPT’ 93 , 386 - 397
    10. 10)
    11. 11)
      • A.F. Webster , S.E. Tavares .
        11. Webster, A.F., Tavares, S.E.: ‘On the design of S-boxesAdvances in Cryptology-Crypto '85, Berlin, Heidelberg, Germany, December 1985 (LNCS, 218), pp. 523534.
        . Advances in Cryptology-Crypto '85 , 523 - 534
    12. 12)
      • T. Shah , I. Hussain , M.A. Gondal , H. Mahmood .
        12. Shah, T., Hussain, I., Gondal, M.A., Mahmood, H.: ‘Statistical analysis of S-box in image encryption applications based on majority logic criterion’, Int. J. Phys. Sci., 2011, 6, (16), pp. 41104127, doi: 10.5897/IJPS11.531.
        . Int. J. Phys. Sci. , 16 , 4110 - 4127
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2017.0194
Loading

Related content

content/journals/10.1049/el.2017.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address