access icon free Effect of Mg insertion on stress-induced resistance drift in MgO-based magnetic tunnel junctions

The stress-induced resistance drift in MgO-based magnetic tunnel junctions (MTJs) with Mg insertion layer above and below a MgO tunnel barrier is investigated. Mg insertion suppresses the resistance drift. Resistance drift characteristics are improved when electrons tunnel into the Mg-inserted barrier–electrode interface, indicating that Mg insertion significantly suppresses trap site formation at the anode-side barrier–electrode interface. However, transmission electron microscopy images confirm that there is little difference in interface crystallinity between the Mg-inserted and non-inserted interfaces. Therefore, it is shown that a slight modification of the barrier–electrode interface states has a significant impact on resistance drift characteristics, and Mg insertion on both interface sides appears to be an effective way to improve MTJ device reliability in practical applications.

Inspec keywords: magnesium; electric resistance; magnesium compounds; stress effects; magnetic tunnelling

Other keywords: stress induced resistance drift; anode-side barrier-electrode interface; tunnel barrier; magnetic tunnel junctions; resistance drift suppression; Mg-MgO

Subjects: Magneto-acoustic, magnetoresistive, magnetostrictive and magnetostatic wave devices

References

    1. 1)
      • 10. Lu, Y., Deranlot, C., Vaurés, A., et al: ‘Effects of a thin Mg layer on the structural and magnetoresistance properties of CoFeB/MgO/CoFeB magnetic tunnel junctions’, Appl. Phys. Lett., 2007, 91, pp. 222504-1222504-3, doi 10.1063.1.2819530.
    2. 2)
    3. 3)
      • 5. Yoshida, C., Sugii, T.: ‘Reliability study of magnetic tunnel Junction with naturally oxidized MgO barrier’. IEEE Int. Reliability Physics Symp., Anaheim, California, USA, 2012, pp. 2A.3.12A.3.5, doi 10.1109/IRPS.2012.6241773.
    4. 4)
      • 9. Wu, E., Sune, J.: ‘Mechanisms of hydrogen release in the breakdown of SiO2-based gate oxides’, IEDM Tech. Dig., Washington D.C., USA, 2005, pp. 388397, doi 10.1109/IEDM.2005.1609359.
    5. 5)
      • 1. Hosomi, M., Yamagishi, H., Yamamoto, T., et al: ‘A novel non-volatile memory with spin torque transfer magnetization switching: spin-RAM’, IEDM Tech. Dig., Washington D.C., USA,2005, pp. 459462, doi 10.1109/IEDM.2005.1609379.
    6. 6)
      • 6. Hosotani, K., Nagamine, M., Aikawa, H., et al: ‘Resistance drift of MgO magnetic tunnel junctions by trapping and degradation of coherent tunneling’. IEEE Int. Reliability Physics Symp., Phoenix, Arizona, USA, 2008, pp. 703704, doi 10.1109/Relphy.2008.4558997.
    7. 7)
    8. 8)
    9. 9)
      • 4. Khan, A.A., Schmalhorst, J., Thomas, A., et al: ‘Dielectric breakdown in Co–Fe–B/MgO/Co–Fe–B magnetic tunnel junction’, J. Appl. Phys., 2008, 103, pp. 123705-1123705-5, doi 10.1063/1.2939571.
    10. 10)
      • 8. Hosotani, K., Asao, Y., Nagamine, M., et al: ‘Effect of interface buffer layer on the reliability of ultra-thin MgO magnetic tunnel junctions’. IEEE Int. Reliability Physics Symp., Phoenix, Arizona, USA, 2007, pp. 650651, doi 10.1109/Relphy.2007.369995.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2015.4299
Loading

Related content

content/journals/10.1049/el.2015.4299
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading