access icon free Rapid electronic prediction of gene expression regulation in bacterial cells

A cytomorphic circuit that can mimic gene expression regulation mechanisms is presented. It is shown that this circuit can efficiently predict the cellular response of the bacterium Escherichia coli in real time. The simulation outputs of the circuit are compared with biological experimental results. The significant similarity between these results shows that the circuit can be used to predict cellular malfunctioning within microseconds.

Inspec keywords: microorganisms; genetics; cellular biophysics

Other keywords: gene expression regulation; cellular response; Escherichia coli bacterium; rapid electronic prediction; cellular malfunctioning; real time; cytomorphic circuit; microseconds; bacterial cells

Subjects: Cellular biophysics; Molecular biophysics

References

    1. 1)
      • 1. Shih, K.C., et al: ‘Prediction of gene regulatory networks using differential expression of cDNA microarray data’. Proc. IEEE 6th Int. Symp. Multimedia Software Engineering, Miami, FL, USA, December 2004, pp. 378385.
    2. 2)
      • 12. da Silva, N., et al: ‘Microbiological examination methods of food and water: a laboratory manual’ (CRC Press/Balkema, The Netherlands, 2013).
    3. 3)
      • 5. Campbell, N.A., Reece, J.B.: ‘Biology’ (Pearson, San Francisco, 2005, 7th edn).
    4. 4)
    5. 5)
      • 3. Qian, L., Zheng, H.: ‘Improving prediction of drug therapy outcome via integration of time series gene expression and protein–protein interaction network’. IEEE 6th Int. Conf. Systems Biology, Xi'an, China, August 2012, pp. 1216.
    6. 6)
      • 9. Doonan, C.: ‘Regulation of gene expression: turning genes on and off’. Proc. 31st W/Conf. Association for Biology Laboratory Education, 2010, pp. 95131.
    7. 7)
    8. 8)
      • 6. Boyer, R.: ‘Biochemistry laboratory, modern theory and techniques’ (Pearson Prentice-Hall, NJ, 2012, 2nd edn).
    9. 9)
      • 1. Shih, K.C., et al: ‘Prediction of gene regulatory networks using differential expression of cDNA microarray data’. Proc. IEEE 6th Int. Symp. Multimedia Software Engineering, Miami, FL, USA, December 2004, pp. 378385.
    10. 10)
      • 8. Dykstra, M.J.: ‘A manual of applied techniques for biological electron microscopy’ (Plenum Press, New York, 1993).
    11. 11)
      • 13. Meera, N.S., Theja, P.C., Devi, M.C.: ‘Production and optimization of β-galactosidase enzyme using probiotic yeast spp.’, Ann. Biol. Res., 2013, 4, (12), pp. 6267.
    12. 12)
      • 11. Billen, D., Lichstein, H.C.: ‘Nutritional requirements for hydrogenase production by Escherichia coli’, J. Bacteriol., 1950, 60, (3), pp. 311314.
    13. 13)
      • 2. Chen, D., et al: ‘An integrated system for class prediction using gene expression profiling’. 8th Int. Conf. Control on Automation Robotics Vision, Kunming, China, December 2004, Vol. 2, pp. 10231028.
    14. 14)
      • 14. Gene and Gene Expression Experimental Guide, Massey University, New Zealand, 2010, pp. 2932.
    15. 15)
      • 10. Sypherd, P.S., Strauss, N.: ‘Chloramphenicol-promoted repression of β-galactosidase synthesis in Escherichia coli’, Biochemistry, 1963, 49, pp. 400407.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2014.2144
Loading

Related content

content/journals/10.1049/el.2014.2144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading