access icon free Monolithically integrated terahertz quantum cascade array laser

By integrating triple terahertz quantum cascade lasers (at ∼3.25 THz) monolithically into an array, a peak power of 213 mW is obtained at 10 K with a threshold current density of only 257 A/cm2. The device shows distinct single-lobe far-field behaviour in the temperature range from 10 to 90 K, with a full-width at half-maximum of 36°. The highest operating temperature of the array laser is identical to that of the single ridge laser, indicating good heat dissipation design in the array. These results are promising for realising high power THz quantum cascade lasers.

Inspec keywords: quantum cascade lasers; terahertz wave devices; integrated optoelectronics; current density

Other keywords: single-lobe far-field behaviour; power 213 mW; monolithically integrated terahertz quantum cascade array laser; temperature 10 K to 90 K; threshold current density; heat dissipation design

Subjects: Design of specific laser systems; Lasing action in semiconductors; Integrated optoelectronics; Semiconductor lasers

References

    1. 1)
      • 8. Kao, T.Y., Hu, Q., Reno, J.L.: ‘Phase-locked arrays of surface-emitting terahertz quantum cascade lasers’, Appl. Phys. Lett., 2010, 96, p. 101106 (doi: 10.1063/1.3358134).
    2. 2)
      • 9. Kapon, E., Lindsey, C., Katz, J., Margalit, S., Yariv, A.: ‘Chirped arrays of diode lasers for supermode control’, Appl. Phys. Lett., 1984, 45, pp. 200202 (doi: 10.1063/1.95209).
    3. 3)
      • 7. de Naurois, G.M., Carras, M., Maisons, G., Marcadet, X.: ‘Effect of emitter number on quantum cascade laser monolithic phased array’, Opt. Lett., 2012, 37, pp. 425427 (doi: 10.1364/OL.37.000425).
    4. 4)
      • 6. Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: ‘High-power terahertz quantum cascade lasers’, Electron. Lett., 2006, 42, pp. 8990 (doi: 10.1049/el:20063921).
    5. 5)
      • 5. Xu, G., Colombelli, R., Khanna, S.P., Belarouci, A., Letartre, X., Li, L., Linfield, E.H., Davies, A.G., Beere, H.E., Ritchie, D.A.: ‘Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures’, Nat. Commun., 2012, 3, p. 952, (doi: 10.1038/ncomms1958).
    6. 6)
      • 10. Liu, J.Q., Chen, J.Y., Liu, F.Q., Li, L., Wang, L.J., Wang, Z.G.: ‘Terahertz quantum cascade laser operating at 2.94 THz’, Chin. Phys. Lett., 2010, 27, p. 104205 (doi: 10.1088/0256-307X/27/10/104205).
    7. 7)
      • 1. Kohler, R., Tredicucci, A., Beltram, F., Beere, F.H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., Rossi, F.: ‘Terahertz semiconductor-heterostructure laser’, Nature, 2002, 417, pp. 156159 (doi: 10.1038/417156a).
    8. 8)
      • 2. Siegel, P.H.: ‘Terahertz technology’, IEEE Trans. Microw. Theory Tech., 2002, 50, pp. 910928 (doi: 10.1109/22.989974).
    9. 9)
      • 4. Lee, A.M., Qin, Q., Kumar, S., Williams, B., Hu, Q., Reno, J.: ‘Realtime terahertz imaging over a standoff distance (>25 meters)’, Appl. Phys. Lett., 2006, 89, p. 141125 (doi: 10.1063/1.2360210).
    10. 10)
      • 11. Wang, T., Liu, J.Q., Chen, J.Y., Liu, Y.H., Liu, F.Q., Wang, L.J., Wang, Z.G.: ‘Continuous-wave operation of terahertz quantum cascade lasers at 3.2 THz’, Chin. Phys. Lett., 2013, 30, p. 064201 (doi: 10.1088/0256-307X/30/6/064201).
    11. 11)
      • 3. Gao, J.R., Hovenier, J.N., Yang, Z.Q., Baselmans, J.J.A., Baryshev, A., Hajenius, M., Klapwijk, T.M., Adam, A.J.L., Klaassen, T.O., Williams, B.S., Kumar, S., Hu, Q., Reno, J.L.: ‘Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer’, Appl. Phys. Lett., 2005, 86, p. 244104 (doi: 10.1063/1.1949724).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.3456
Loading

Related content

content/journals/10.1049/el.2013.3456
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief