access icon free Effects of extreme surface roughness on 3D printed horn antenna

3D printing is an emerging technology in manufacturing. It is the long-term goal of the industry to print complex and fully functional products from cell phones to vehicles. A drawback of many 3D printing technologies is rough surface finish. It is known that metals with high surface roughness severely degrade the propagation of electromagnetic waves. Presented is the first known evaluation of the electromagnetic impact of the typical surface roughness in metal parts produced by electron beam melting. Two Ku-band (12–15 GHz) horn antennas were 3D printed, with different surface roughness, and compared to a standard horn antenna purchased from Pasternack.

Inspec keywords: microstrip antennas; electromagnetic wave propagation; microwave antennas

Other keywords: surface roughness; extreme surface roughness; 3D printed horn antenna; vehicles; 3D printing technologies; frequency 12 GHz to 15 GHz; electromagnetic wave propagation; three-dimensional printing; electromagnetic impact; cell phones

Subjects: Electromagnetic wave propagation; Single antennas

References

    1. 1)
      • 11. Gebhardt, A., Schmidt, F.-M., Hötter, J.-S., Sokalla, W., Sokalla, P.: ‘Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry’, Phys. Procedia, 2010, 5, pp. 543549 (doi: 10.1016/j.phpro.2010.08.082).
    2. 2)
      • 10. Parthasarathy, J., Starly, B., Raman, S., Christensen, A.: ‘Mechanical evaluation of porous titanium (Ti6al4v) structures with electron beam melting (EBM)’, J. Mech. Behav. Biomed. Mater., 2010, 3, (3), pp. 249259 (doi: 10.1016/j.jmbbm.2009.10.006).
    3. 3)
      • 3. Wohlers, T.: ‘Wohlers Report 2012: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report’ (Wohlers Associates, 2012).
    4. 4)
      • 1. Gibson, I., Rosen, D.W., Stucker, B.: ‘Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing’ (Springer-Verlag, USA, 2010).
    5. 5)
      • 14. Uehara, Y., Suzuki, Y., Komagata, H., Tsuruoka, T., Ushioda, S.: ‘Electron energy loss spectra showing the effects of surface roughness and electromagnetic retardation – theory and experiment’, J. Phys. Soc. Jpn., 2001, 70, pp. 2012 (doi: 10.1143/JPSJ.70.2012).
    6. 6)
      • 2. Lipson, H., Kurman, M.: ‘Fabricated: The New World of 3D Printing’ (Wiley, USA, 2013).
    7. 7)
      • 4. Ahn, D., Kweon, J.-H., Kwon, S., Song, J., Lee, S.: ‘Representation of surface roughness in fused deposition modeling’, J. Mater. Process. Technol., 2009, 209, (15), pp. 55935600 (doi: 10.1016/j.jmatprotec.2009.05.016).
    8. 8)
      • 9. Murr, L., Gaytan, S., Ceylan, A., , et al.: ‘Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting’, Acta Mater., 2010, 58, (5), pp. 18871894 (doi: 10.1016/j.actamat.2009.11.032).
    9. 9)
      • 8. Gaytan, S., Murr, L., Martinez, E., , et al.: ‘Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting’, Metall. Mater. Trans. A, 2010, 41, (12), pp. 32163227 (doi: 10.1007/s11661-010-0388-y).
    10. 10)
      • 13. Ning, Y., Jiang, W.: ‘The electromagnetic characteristics of conducting rough surfaces at millimeter wave frequencies’. IEEE Int. Conf. Microwave and Millimeter Wave Technology, 2008 (ICMMT 2008), Nanjing, China, April 2008.
    11. 11)
      • 6. Eosoly, S., Brabazon, D., Lohfeld, S., Looney, L.: ‘Selective laser sintering of hydroxyapatite/poly-Ε-caprolactone scaffolds’, Acta Biomat., 2010, 6, (7), pp. 25112517 (doi: 10.1016/j.actbio.2009.07.018).
    12. 12)
      • 5. Choi, J.-W., Medina, F., Kim, C., , et al.: ‘Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility’, J. Mater. Process. Technol., 2011, 211, (3), pp. 424432 (doi: 10.1016/j.jmatprotec.2010.10.019).
    13. 13)
      • 12. Holloway, C.L., Kuester, E.F.: ‘Power loss associated with conducting and superconducting rough interfaces’, IEEE Trans. Microw. Theory Tech., 2000, 48, (10), pp. 16011610 (doi: 10.1109/22.873886).
    14. 14)
      • 7. Pereira, T., Silva, M., Oliveira, M., , et al.: ‘Effect of process parameters on the properties of selective laser sintered poly (3-hydroxybutyrate) scaffolds for bone tissue engineering’, Virtual Phys. Prototyping, 2012, 7, (4), pp. 275285 (doi: 10.1080/17452759.2012.738551).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1528
Loading

Related content

content/journals/10.1049/el.2013.1528
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
inside view*