access icon free Laterally-coupled distributed feedback laser with first-order gratings by interference lithography

The first laterally-coupled distributed feedback (DFB) laser with first-order sidewall gratings fabricated by optical interference lithography is experimentally demonstrated. The gratings were first etched into a dielectric mask on the planar top surface of an InP/AlGaInAs laser epiwafer, and then transferred to both sidewalls of a 2 µm deep ridge-waveguide structure using a novel self-aligned process. DFB ridge-waveguide lasers with a cavity length of 650 µm and width of 2.6 µm (with 300 nm gratings on both sidewalls) achieved single longitudinal mode continuous-wave operation, with a sidemode suppression ratio of 37 dB. The threshold current density is 1.7 kA/cm2 at room temperature, and the slope efficiency is 0.14 mW/mA per facet (uncoated).

Inspec keywords: distributed feedback lasers; photolithography; quantum well lasers; laser beams; waveguide lasers; diffraction gratings; indium compounds; optical fabrication; current density; laser cavity resonators; III-V semiconductors; masks; light interference; gallium arsenide; semiconductor epitaxial layers; ridge waveguides; laser modes; etching; aluminium compounds

Other keywords: dielectric mask; InP-AlGaInAs; optical interference lithography; DFB ridge-waveguide lasers; sidemode suppression ratio; first-order sidewall gratings; threshold current density; laser epiwafer; self-aligned process; etching; slope efficiency; single longitudinal mode continuous-wave operation; deep ridge-waveguide structure; cavity length; size 2.6 mum; depth 2 mum; size 300 nm; temperature 293 K to 298 K; uncoated facets; laterally-coupled distributed feedback laser; planar top surface; size 650 mum

Subjects: Gratings, echelles; Semiconductor lasers; Laser beam interactions and properties; Design of specific laser systems; Optical fabrication, surface grinding; Laser beam characteristics and interactions; Lasing action in semiconductors; Laser resonators and cavities; Laser resonators and cavities

References

    1. 1)
      • 5. Haring, K., Viheriälä, J., Viljanen, M.R., Paajaste, J., Koskinen, R., Suomalainen, S., Guina, M.: ‘Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography’,Electron. Lett., 2010, 46, (16), pp. 11461147 (doi: 10.1049/el.2010.1533).
    2. 2)
      • 3. Jang, S.J., Yu, J.S., Lee, Y.T.: ‘Laterally coupled DFB, lasers with self-aligned metal surface grating by holographic lithography’,IEEE Photonics Technol. Lett., 2008, 20, (7), pp. 514516 (doi: 10.1109/LPT.2008.918864).
    3. 3)
      • 1. Miller, L.M., Verdeyen, J.T., Coleman, J.J., Bryan, R.P., Alwan, J.J., Beernink, K.J., Hughes, J.S., Cockerill, T.M.: ‘A distributed feedback ridge waveguide quantum well heterostructure laser’,IEEE Photonics Technol. Lett., 1991, 3, (1), pp. 68 (doi: 10.1109/68.68030).
    4. 4)
      • 2. Watanabe, Y., Chen, N., Takei, K., Chijuma, K., Futakuchi, N., Nakano, Y.: ‘Laterally coupled strained MQW ridge waveguide distributed-feedback laser diode fabricated by wet-dry hybrid etching process’,IEEE Photonics Technol. Lett., 1998, 10, (12), pp. 16881690 (doi: 10.1109/68.730470).
    5. 5)
      • 6. Telkkala, J., Viheriala, J., Aho, A., Melanen, P., Karinen, J., Dumitrescu, M., Guina, M.: ‘Narrow linewidth laterally-coupled 1.55 µm DFB lasers fabricated using nanoimprint lithography’,Electron. Lett., 2011, 47, (6), pp. 400401 (doi: 10.1049/el.2011.0125).
    6. 6)
      • 4. Tolstikhin, V.I., Watson, C.D., Pimenov, K., Moore, R., Logvin, Y., Wu, F.: ‘Laterally coupled DFB lasers for one-step growth photonic integrated circuits in InP’,IEEE Photonics Technol. Lett., 2009, 21, (10), pp. 621623 (doi: 10.1109/LPT.2009.2015464).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1520
Loading

Related content

content/journals/10.1049/el.2013.1520
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading