access icon free Gain enhancement for wide bandwidth endfire antenna with I-shaped resonator (ISR) structures

A broadband gain enhancement endfire antenna is presented. The gain enhancement is achieved by loading with an I-shaped resonator (ISR) structure in the endfire direction. Broad bandwidth is realised by using a microstrip-to-coplanar balun and bowtie dipole elements, while gain enhancement is achieved by loading the ISR structure in the endfire direction. The measurements show that the ISR-loaded antenna presents a gain of about 4–8 dB in the whole working band (4.5–9.5 GHz), which is about 2 dB more than the unloaded one. The advantages of broad bandwidth and high gain make this antenna valuable in wireless communication systems.

Inspec keywords: baluns; microstrip antenna arrays; microwave resonators; broadband antennas; dipole antenna arrays; bow-tie antennas

Other keywords: wide bandwidth endfire antenna Gain enhancement; microstrip-to-coplanar balun; I-shaped resonator structures; broadband antenna; bandwidth 4.5 GHz to 9.5 GHz; bowtie dipole element; wireless communication systems; endfire direction; ISR-loaded antenna

Subjects: Antenna arrays; Waveguide and microwave transmission line components; Microwave circuits and devices

References

    1. 1)
      • 5. Holden, A.J., Robbins, D.J., Stewart, W.J.: ‘Magnetism from conductors and enhanced nonlinear phenomena’, IEEE Trans. Microw. Theory Tech., 1999, 47, pp. 20752084 (doi: 10.1109/22.798002).
    2. 2)
      • 9. Deal, W.R., Kaneda, N., Sor, J., Qian, Y., Itoh, T.: ‘A new quasi-Yagi antenna for planar active antenna arrays’, IEEE Trans. Microw. Theory Tech., 2000, 48, pp. 910918 (doi: 10.1109/22.846717).
    3. 3)
      • 8. Cao, W.Q., Zhang, B.N., Liu, A.J., Yu, T.B., Guo, D.S., Wei, Y.: ‘Gain enhancement of broadband periodic endfire antenna by using split-ring resonator structures’, IEEE Trans. Antennas Propag., 2012, 60, pp. 35133516 (doi: 10.1109/TAP.2012.2196959).
    4. 4)
      • 7. Nguyen, P.T., Abbosh, A., Crozier, S.: ‘Wideband and compact quasi-Yagi antenna integrated with balun of microstrip to slotline transitions’, Electron. Lett., 2013, 49, pp. 8889 (doi: 10.1049/el.2012.3192).
    5. 5)
      • 6. Huang, Y., De, A., Zhang, Y., Sarkar, T.K., Carlo, J.: ‘Enhancement of radiation along the ground plane from a horizontal dipole located close to it’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 294297 (doi: 10.1109/LAWP.2008.922141).
    6. 6)
      • 10. Abbosh, A., Biakowski, M.: ‘An UWB planar out-of-phase power divider employing parallel stripline-microstrip transitions’, Microw. Opt. Technol. Lett., 2007, 49, (4), pp. 910918 (doi: 10.1002/mop.22324).
    7. 7)
      • 3. Schurig, D., Mock, J.J., Smith, D.R.: ‘Electric-field-coupled resonators for negative permittivity metamaterials’, Appl. Phys. Lett., 2009, 57, pp. 12751282.
    8. 8)
      • 4. Lai, A., Itoh, T., Caloz, C.: ‘Composite right/left-handed transmission line metamaterials’, IEEE Microw. Mag., 2004, 5, pp. 3450 (doi: 10.1109/MMW.2004.1337766).
    9. 9)
      • 2. Baena, J.D., Bonache, J., Martin, F., Marques, R., Falcone, F., Lopetegi, T., Laso, M.A.G., Garcia, J., Garcia, I., Gill, I., Sorolla, M.: ‘Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines’, IEEE Trans. Microw. Theory Tech., 2005, 53, pp. 14511461 (doi: 10.1109/TMTT.2005.845211).
    10. 10)
      • 1. Caloz, C., Itoh, T.: ‘Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications’ (Wiley-IEEE Press, Piscataway, NJ, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1198
Loading

Related content

content/journals/10.1049/el.2013.1198
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading