access icon free Fully passivated radial junction nanowire silicon solar cells with submerged nickel-silicide contact for efficiency enhancement

Presented is a silicon solar cell model with fully passivated radial junction nanowire surface decoration and submerged nickel-silicide contact. Numerical simulations using a finite-difference time-domain method have been done to investigate the spectral responses of the solar cell model. The experimental results indicate that, with proper nickel-silicide thickness, the fill factor of the cell can be improved considerably without much degradation on short circuit current density. Under AM 1.5G illumination, the silicon nanowire solar cell device with 50 Å nickel-silicide contact has short circuit current density of 26.3 mA/cm2, open circuit voltage of 586 mV and fill factor of 70.0%, contributing to power conversion efficiency of 10.8%, which is 19% higher than the control device without the nickel-silicide contact.

Inspec keywords: elemental semiconductors; nanowires; power conversion; finite difference time-domain analysis; nickel compounds; current density; short-circuit currents; solar cells; silicon

Other keywords: efficiency enhancement; Si-NiSi; spectral response; finite-difference time-domain method; control device; silicon solar cell model; open circuit voltage; submerged nickel-silicide contact; passivated radial junction nanowire surface decoration; fill factor; power conversion efficiency; numerical simulation; short circuit current density

Subjects: Other numerical methods; Solar cells and arrays; Numerical approximation and analysis; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • 3. Lin, C., Povinelli, M.L.: ‘Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications’, Opt. Express, 2009, 17, (22), pp. 1937119381 (doi: 10.1364/OE.17.019371).
    2. 2)
      • 5. Schroder, D., Meier, D.: ‘Solar cell contact resistance–a review’, IEEE Trans. Electron Devices, 1984, 31, (5), pp. 637647 (doi: 10.1109/T-ED.1984.21583).
    3. 3)
      • 2. Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.Y., LeBoeuf, S.F., Pietrzykowski, M., Codella, P.J., Korevaar, B.A., Sulima, O., Rand, J., Davuluru, A., Rapol, U.: ‘Strong broadband optical absorption in silicon nanowire films’, J. Nanophotonics, 2007, 1, (1), p. 013552 (doi: 10.1117/1.2768999).
    4. 4)
      • 1. Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M.: ‘Coaxial silicon nanowires as solar cells and nanoelectronic power sources’, Nature,2007, 449, (7164), pp. 885889 (doi: 10.1038/nature06181).
    5. 5)
      • 4. Kayes, B.M., Atwater, H.A., Lewis, N.S.: ‘Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells’, J. Appl. Phys., 2005, 97, (11), p. 114302 (doi: 10.1063/1.1901835).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.0998
Loading

Related content

content/journals/10.1049/el.2013.0998
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
sunny deposition*