access icon free Carrier transport mechanism of ohmic contacts to AlGaN/GaN heterostructures analysed by parallel network model

The carrier transport mechanism of low resistance Ti/Al/Au ohmic contact to AlGaN/GaN heterostructures was investigated. Based on a parallel network model consisting of the predominant ohmic path (made by TiN-based contact inclusions) and rest region (no interfacial reaction), the formation of ohmic contact was found to be due to tunnelling of carriers through the thin barrier formed at the TiN-based contact inclusion, where the barrier height was 0.45 eV and the carrier density was 9.0 × 1018 cm− 3.

Inspec keywords: semiconductor-metal boundaries; carrier mobility; wide band gap semiconductors; high electron mobility transistors; aluminium compounds; gold; III-V semiconductors; tunnelling; electric resistance; titanium; semiconductor heterojunctions; gallium compounds; aluminium; carrier density; ohmic contacts

Other keywords: carriers tunnelling; carrier transport mechanism; Ti-Al-Au-AlGaN-GaN; parallel network model; electron volt energy 0.45 eV; predominant ohmic path; low resistance ohmic contact; rest region; heterostructures; carrier density; contact inclusion

Subjects: Electrical properties of metal-nonmetal contacts; II-VI and III-V semiconductors; Semiconductor-metal interfaces; Other field effect devices; Low-field transport and mobility; piezoresistance (semiconductors/insulators); Tunnelling: general (electronic transport)

References

    1. 1)
      • 4. Fontserè, A., Pérez-Tomás, A., Placidi, M., Llobet, J., Baron, N., Chenot, S., Cordier, Y., Moreno, J.C., Gammon, P.M., Jennings, M.R., Porti, M., Bayerl, A., Lanza, M., Nafría, M.: ‘Micro and nano analysis of 0.2 Ω mm Ti/Al/Ni/Au ohmic contact to AlGaN/GaN’, Appl. Phys. Lett., 2011, 99, (21), pp. 213504-1213504-3.
    2. 2)
      • 8. Yu, A.Y.C.: ‘Electron tunnelling and contact resistance of metal-silicon contact barriers’, Solid-State Electron., 2003, 47, (2), pp. 239247.
    3. 3)
      • 7. Blakemore, J.S.: ‘Semiconducting and other major properties of gallium arsenide’, J. Appl. Phys., 1982, 53, (10), pp. R123R181 (doi: 10.1063/1.331665).
    4. 4)
      • 2. Saadaoui, S., Salem, M.M.B., Gassoumi, M., Maaref, H., Gaquiere, C.: ‘Electrical characterization of (Ni/Au)/Al0.25Ga0.75N/GaN/SiC Schottky barrier diode’, J. Appl. Phys., 2011, 110, (1), pp. 013701-1013701-6.
    5. 5)
      • 5. Kim, S., Ryou, J.-H., Dupuis, R.D., Kim, H.: ‘Carrier transport mechanism of low resistance Ti/Al/Au ohmic contacts to AlInN/GaN heterostructures’, Appl. Phys. Lett., 2013, 102, (5), pp. 052107-1052107-4.
    6. 6)
      • 3. Liu, Z.H., Arulkumaran, S., Ng, G.I.: ‘Temperature dependence of ohmic contact characteristics in AlGaN/GaN high electron mobility transistors from − 50 to 200°C’, Appl. Phys. Lett., 2009, 94, (14), pp. 142105-1142105-3.
    7. 7)
      • 6. Zhou, L., Leach, J.H., Ni, X., Morkoç, H., Smith, D.J.: ‘Ti/Al/Ni/Au ohmic contacts for AlInN/AlN/GaN-based heterojunctions field-effect transistors’, J. Appl. Phys., 2010, 107, (1), pp. 014508-1014508-5.
    8. 8)
      • 1. Mohammed, F.M., Wang, L., Koo, H.J., Adesida, I.: ‘Anatomy-performance correlation in Ti-based contact metallizations on AlGaN/GaN heterostructures’, J. Appl. Phys., 2007, 101, (3), pp. 033708-1033708-15.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.0463
Loading

Related content

content/journals/10.1049/el.2013.0463
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading