access icon free Efficient FDTD algorithms for dispersive Drude-critical points media based on bilinear z-transform

Finite-difference time-domain (FDTD) schemes based on the bilinear z-transform are introduced for modelling time-domain wave propagation in dispersive Drude-critical points media. The accuracy and efficiency of the proposed technique are verified by comparisons with other FDTD algorithms and analytical solutions.

Inspec keywords: electromagnetic wave propagation; dispersive media; time-domain analysis; finite difference time-domain analysis; transforms

Other keywords: electromagnetic wave propagation; finite-difference time-domain scheme; bilinear z-transform; FDTD algorithm; time-domain wave propagation modelling; dispersive Drude-critical point media

Subjects: Other numerical methods; Numerical approximation and analysis; Integral transforms in numerical analysis; Electromagnetic waves: theory; Electromagnetic wave propagation

References

    1. 1)
      • 7. Roden, J.A., Gedney, S.D.: ‘Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media’, Microw. Opt. Technol. Lett., 2000, 27, (5), pp. 334339 (doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A).
    2. 2)
      • 5. Vial, A., Laroche, T., Dridi, M., Le Cunff, L.: ‘A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method’, Appl. Phys. A, Mater. Sci. Process., 2011, 103, pp. 849853 (doi: 10.1007/s00339-010-6224-9).
    3. 3)
      • 9. Hulse, C., Knoesen, A.: ‘Dispersive models for the finite-difference time-domain method: design, analysis, and implementation’, J. Opt. Soc. Am. A, 1994, 11, (6), pp. 18021811 (doi: 10.1364/JOSAA.11.001802).
    4. 4)
      • 1. Taflove, A., Hagness, S.C.: ‘Computational electrodynamics: The finite-difference time-domain method’ (Artech House, 2005, 3rd edn).
    5. 5)
      • 3. Etchegoin, P.G., Ru, E.C.L., Meyer, M.: ‘An analytic model for the optical properties of gold’, J. Chem. Phys., 2006, 125, p. 164705 (doi: 10.1063/1.2360270).
    6. 6)
      • 8. Proakis, J.G., Manolakis, D.G.: ‘Digital signal processing: principles, algorithms, and applications’ (Prentice Hall, 1996, 3rd edn).
    7. 7)
      • 2. Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: ‘Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization’, Phys. Rev. B, 2006, 73, p. 035407.
    8. 8)
      • 6. Shibayama, J., Watanabe, K., Ando, R., Yamauchi, J., Nakano, H.: ‘Simple frequency-dependent FDTD algorithm for a Drude-critical points model’. Asia-Pacific Microwave Conf., Yokohama, Japan, 2010, pp. 7375.
    9. 9)
      • 4. Vial, A.: ‘Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method’, J. Opt. A, Pure Appl. Opt., 2007, 9, pp. 745748 (doi: 10.1088/1464-4258/9/7/029).
    10. 10)
      • 10. Pereda, J., Vegas, A., Prieto, A.: ‘FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique’, IEEE Trans. Microw. Theory Tech., 2002, 50, (7), pp. 16891695 (doi: 10.1109/TMTT.2002.800388).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.0198
Loading

Related content

content/journals/10.1049/el.2013.0198
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading