http://iet.metastore.ingenta.com
1887

Terahertz plasmonic-like waveguide for integrated sensing applications

Terahertz plasmonic-like waveguide for integrated sensing applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new plasmonic-like waveguide structure is proposed for integrated terahertz refractive index sensing. The surface plasmon-like wave is an effective means for high sensitivity sensing in the terahertz range, but most of the reported configurations are based on free space excitation using a prism, that is not convenient for integration. In the proposed structure a dielectric waveguide is used to excite the sensor. Dispersion characteristics and the sensitivity of the structure are calculated using COMSOL full-wave simulations.

References

    1. 1)
      • 1. Withayachumnankul, W., Png, G., Yin, X., Atakaramians, S., et al: ‘T-ray sensing and imaging’, Proc. IEEE, 2007, 95, (8) (doi: 10.1109/JPROC.2007.900325).
    2. 2)
      • 2. Ohkubo, T., Onuma, M., Kitagawa, J., Kadoyab, Y.: ‘Micro- strip-linebased sensing chips for characterization of polar liquids in terahertz regime’, Appl. Phys. Lett., 2006, 88, p. 212511 (doi: 10.1063/1.2207989).
    3. 3)
      • 3. Neshat, M., Safavi-Naeini, S.: ‘Performance analysis of resonance-based transducers in terahertz bio-chips using equivalent surface impedance model’, IEEE Photonics Technol. Lett., 2010, 22, (20), pp. 15121514 (doi: 10.1109/LPT.2010.2065799).
    4. 4)
      • 4. Yee, C.M., Sherwin, M.S.: ‘High-Q terahertz microcavities in silicon photonic crystal slabs’, Appl. Phys. Lett., 2009, 94, p. 154104 (doi: 10.1063/1.3118579).
    5. 5)
      • 5. Harsha, S., Laman, N., Grischkowsky, D.: ‘High-Q terahertz Bragg resonances within a metal parallel plate waveguide’, Appl. Phys. Lett., 2009, 94, p. 091118 (doi: 10.1063/1.3094919).
    6. 6)
      • 6. William, C., Andrews, S., Maier, S., Fernandez-Dominguez, A., Martin-Moreno, L., Garcia-Vidal, F.: ‘Highly confined guiding of terahertz surface palsmon polaritons on structured metal surfaces’, Nature Photonics, 2008, 2, pp. 175179 (doi: 10.1038/nphoton.2007.301).
    7. 7)
      • 7. Kumar, G., Pandey, S., Cui, A., Nahata, A.: ‘Planar plasmonic terahertz waveguides based on periodically corrugated metal films’, New J. Phys., 2011, 13, paper ID 033024 (doi: 10.1088/1367-2630/13/3/033024).
    8. 8)
      • 8. Homola, J., Yee, S.S., Gauglitz, G.: ‘Surface plasmon resonance sensors: review’, Sens. Actuators B, 1999, 54, pp. 315 (doi: 10.1016/S0925-4005(98)00321-9).
    9. 9)
      • 9. Tan, Q., Cosentino, A., Roussey, M., Herzig, H.: ‘Theoretical and experimental study of 30 nm metallic slot array’, J. Opt. Soc. Am. B, 2011, 28, (7), pp. 17111715 (doi: 10.1364/JOSAB.28.001711).
    10. 10)
      • 10. Lee, D., Yim, H., Lee, S., Hoan, B.: ‘Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide’, Opt. Express, 2011, 19, (21), pp. 1989519900 (doi: 10.1364/OE.19.019895).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2012.4413
Loading

Related content

content/journals/10.1049/el.2012.4413
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address