http://iet.metastore.ingenta.com
1887

Quantum communication technology

Quantum communication technology

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantum communication is built on a set of disruptive concepts and technologies. It is driven by fascinating physics and by promising applications. It requires a new mix of competencies, from telecom engineering to theoretical physics, from theoretical computer science to mechanical and electronic engineering. First applications have already found their way into niche markets, and university labs are working on futuristic quantum networks, but most of the surprises are still ahead of us. Quantum communication, and more generally quantum information science and technologies, are here to stay and will have a profound impact on the 21st century.

References

    1. 1)
      • Quantum communication
    2. 2)
      • www.idQuantique.com
    3. 3)
      • Quantum cryptography
    4. 4)
      • Swiss national metrology institute, http://www.metas.ch
    5. 5)
      • Bennett, Ch.H., Brassard, G.: `Quantum cryptography: public key distribution and coin tossing', Int. conf. Computers, Systems & Signal Processing, 1984, Bangalore, India, 10–12, p. 175–179
    6. 6)
    7. 7)
      • Quantum key distribution with high loss: toward global secure communication
    8. 8)
      • Beating the photon-number-splitting attack in practical quantum cryptography
    9. 9)
      • Decoy state quantum key distribution
    10. 10)
      • Harrington, J.W., Ettinger, J.M., Hugues, R.J., Nordholt, J.R.: `Enhancing practical security of quantum key distribution with a few decoy states', quant-ph/0503002, Los Alamos report LA-UR-05-1156, 2005
    11. 11)
      • Differential-phase-shift quantum key distribution using coherent light
    12. 12)
    13. 13)
      • Single-photon detectors for optical quantum information applications
    14. 14)
      • Phys. Rev. A
    15. 15)
      • Counting near-infrared single-photons with 95% efficiency
    16. 16)
      • An afterpulse is caused by trapped charges in the APD being released when the detector is reset causing another avalanche resulting in a false detection event
    17. 17)
      • Continuous Variable Quantum Cryptography Using Coherent States
    18. 18)
      • Quantum key distribution and 1 Gbit/s data encryption over a single fibre
    19. 19)
      • The SECOQC quantum key distribution network in Vienna
    20. 20)
      • Trojan-horse attacks on quantum-key-distribution systems
    21. 21)
      • Effects of detector efficiency mismatch on security of quantum cryptosystems
    22. 22)
      • Time-shift attack in practical quantum cryptosystems
    23. 23)
    24. 24)
    25. 25)
      • Quantum memories: A review based on the European integrated project Qubit Applications (QAP)
    26. 26)
      • See the websites for QuReP at http://quantumrepeaters.eu and Q-ESSENCE: http://qurope.eu/projects
    27. 27)
      • For example in Switzerland, the NCCR – quantum photonics programme http://nccr-qp.epfl.ch
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2010.1626
Loading

Related content

content/journals/10.1049/el.2010.1626
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
Interview
This is a required field
Please enter a valid email address